

Unity MR-linac physics

Simon Woodings

Konference Radiologické Fyziky, Ostrava 20. 4. 2023

Disclosure

UMCU has strong R&D connections with Elekta & Philips

- Elekta have supported my attendance today
- I have 22y experience but only with Elekta equipment!

New era of adaptive radiotherapy

Three commercial systems in world-wide use

Vision at time of treatment enables ART

Rationale for MR-guided radiotherapy

Interfraction variation rectal cancer treatment CTV 5x5Gy

Martijn Intven, Rob Tijssen and UMCU clinical team, 2018

Adaptive MR-guided RT Patient 3- the perfect/worst candidate?

CBCT v MR-linac image quality

Imagine the perfect radiotherapy system for curing cancer

- Start radiotherapy immediately no waiting
- See cancer clearly before and during treatment
- Change radiotherapy as often as the internal anatomy moves
- Alter dose day by day depending on anatomy/biology
- Few fractions

Dr Alison Tree, Radiation Oncologist Royal Marsden UK

Unity MR-linac

BASE 1.5 T wide bore scanner

GANTRY

7 MV FFF linear accelerator 57 x 22 cm² Co-planar IMRT

GRADIENTS

Split gradient design 15 mTm⁻¹, 65 mTm⁻¹ms⁻¹

RECEIVER COILS

Radio lucent coil array (2 x 4 ch)

Content

- The new era
- Unity and the patient workflow
- Impact of the magnetic field
- Machine performance and physics tests
- Motion management
- Current status and future developments

Unity and the patient workflow

Design of the Unity

- Fixed mounting on ring gantry
- Standing waveguide
- No bending magnets, steering
- No flattening filter
- No gantry-dependent look-up-tables
- x1 energy: 7 MV FFF
- Simple, no options, no adjustments
- Magnetic field 1.5 T

Elekta handleiding

Conv. Linac

- 00 cm
- Open (much space) ٠
- Isocenter in the target ٠
- Table movements possible all directions
- Correct positioning errors using table
- Field size: 40 x 40 cm² ٠
- Isoc at 100 cm ٠
- Collimator rotations possible ٠
- Cone-beam CT ٠
- Magnetic field: 0.0005 Tesla (Earth magn. field) ٠
- Couch attenuation (< 2%) ٠

- Closed (small bore \rightarrow less clearance)
- Fixed isocenter at the body center
- No LR and AP table movements •
- Correct positioning errors using TPS/software solutions •
- Field size: 57 x 22 cm²
- lsoc at 143.5 cm •
- No collimator rotations •
- MR imaging
- Magnetic field: 1.5 Tesla
 - (= 30000 x Earth magn. Field)
- Couch attenuation (< 26%) •

Plan adaptation

Adapt-to-position

Pretreatment CT or MRI

Rigid registration

Online MRI

Online MRI

Translation

Pretreatment CT or MRI

Plan adaptation on pretreatment CT or MR

Adapt-to-shape

Pretreatment CT

Deformable registration

Deformed structures

Online MRI

Unity MR-linac workflow

Bohoudi et al. Radiother Oncol 2017

Dose delivery in a magnetic field

- Photons are not affected by the magnetic field
- Electron trajectory is changed by the Lorentz force
- Therefore the local dose deposition will change

Trajectory of an electron in water

Force on the electron:

- Lorenz force
 - Will change the trajectory
- Stopping power
 - Interactions in matter will slow down the electron

De Pooter J et al, PMB (2020)

Malkov, V. N., et al PMB 64 (2019)

Machine performance and physics tests

Accurate beam alignment - isocenter

Van Zijp et al. PMB **61** (3)

0.5

Reference dosimetry

Review paper: De Pooter J *et al*, PMB (2020) AAPM TG351 - Clinical reference dosimetry in MR-guided radiotherapy (not yet published)

Dosimetry – U03 MRL

Standard deviation: U02 0.60% (x4 adjustments) U03 0.48% (x1 adjustments) (due to linac variation and measurement uncertainty)

UMCU Unity Linac QA schedule

Test	Frequency	
Daily constancy		
EPID-imaging (output and field edges)	Daily	
Safety and functionality checks		
Inhibits and warning systems	Weekly	
Dosimetry		
Absolute Dosimetry	Weekly	
Dose Linearity	Weekly	
Energy Measurement	Weekly	
Starcheck Profile Measurement	Monthly	
Film measurements		
Opposing Fields	Monthly	
Focal Spot Alignment	Monthly	
MLC Stripe Test	Monthly	
Spokefilm	3-Monthly	
X-jaw Accuracy	3-Monthly	
Watertank Measurements		
Profiles and PDD's	3-Monthly	
Outputfactors	3-Monthly	
Diagonals	3-Monthly	
Other Measurements		
Radiation Leakage	Annual	
Cryostat and Couch transmission	Annual	
End-to-end test	Annual	
Workflow test	As required	

MRI acceptance testing and commissioning

System configuration and Connectivity (SCC)			
System & connectivity	test#		
general inventory	1.1		
DICOM functionality	1.2		
patient couch	1.3		
patient communication	1.4		
cameras	1.5		

Quality	v Control	
Quant		

B0 field	test#	Field gradients	test#	RF fields	test#
absolute field strength	2.1	image orientation	3.1	flip angle accuracy	4.1
f0 stability	2.2	ghosting	3.2	RF cage seal	4.2
cryogen level	2.3	gradient delays	N/A	receiver coil performance	4.2
B0 homogeneity	2.4	eddy currents	N/A		
HYBRID TESTS		HYBRID TESTS		HYBRID TESTS	
B0 direction	5.1	gradient non-linearities	5.3	linac induced RF interference	5.4
gantry dependent B0	5.2			radiation influence	5.5

Quality Assurance (QA)			
General image quality	test#	Sequence specific evaluation	test#
PIQT	6.1	signal-to-noise	6.2
ACR	6.2	low contrast detectability	6.2
FBIRN	6.3	geometric fidelity	3.2

Protocol is Unity consortium effort

- Rationale presented in manuscript
- Benchmark results of four systems
- Detailed instructions in appendices
- MRI Protocols ('Examcards') free to download as supplementary material

Tijssen et al., Radiother Oncol 2019, 132:114-20

Gradient fidelity on the MRL

3D FFE sequence Geometric correction turned ON Right column shows total distortion vector sum of x y and z distortions

1.5T Ingenia (MRI-sim) 20170501 H-55 우 Total(dr)

LR (dx) AP (dy) HF (dz)

H-55

우

LR (dx)

AP (dy)

HF (dz)

3D Geometric QA for research use

DSV (mm)	Maximum total displacement Ingenia	Maximum total displacement vector MR-Linac
150	0.73 mm	0.84 mm
250	1.22 mm	1.11 mm
350	1.87 mm	1.25 mm
400	2.23 mm	1.55 mm

Tijssen, Phillipens et al., Radiother Oncol, 132:114-20 (2019)

Total(dr)

0

-2

Treatment planning

Magnetic field is incorporated in the dose calculation

- Thus also the effects on the dose distribution
- GPUMCD Monte Carlo algorithm

Effects of the magnetic field are most times not visible due to IMRT optimization

Beam model verification – TPS v measurements

10 x 10 cm² field

2 x 2 cm² field

Patient QA: Delta4 MR phantom

9,99

<mark>666</mark>

nect

100,0

99,8

Gamma pass rate

99**,**5

99,8

12043-164*

99,8

9,66

Lune

	#
Gyneacology	20
Head&neck	9
Kidney/adrenal gland	12
Liver	13
Lung	33
Multiple lymph Node	20
Oesophagus	13
Pancreas	42
Prostate (20x 3.1Gy + focal boost)	28
Prostate (5x 725 cGy)	55
Prostate (6x 6 Gy)	18
Rectum	35
Sinale lymph Node	16

100,0

AC Houweling et al. PMB 61 (2016) de Vries et al. PMB 63 (2018)

6'66

99,7

Rectum

Summary of physics measurements

- Impact of the magnetic field well studied
- Absolute dose can be determined using new formalism
- Equipment should be MR proof
- Patient QA results using various devices are good
- Online QA is needed for plan adaptation

Motion management

Comprehensive Motion Management: 4 Strategies / 11 Contrasts + DWI

Stationary

Full Exhalation

Free Breathing (Time Average Position)

Breath-Hold

T1, T2 & Flair

T1 (FatSat / no FatSat), T Balanced (FatSat / no FatSat)

T1, T2 & Balanced

Accelerated bv C-SENSE

Elekta

Accelerated by C-SENSE

Motion Artifact Suppression by 3D Vane

Accelerated by C-SENSE

Elekta Unity with Comprehensive Motion Management (CMM) has CE mark and U.S. FDA 510(k) clearance. Not available in all markets.

Unity comprehensive motion management (CMM)

Key features

True Tracking

 Measures the displacement of the registration structure (usually the target)

Automatic gating

 Gates the beam on / off depending on True Tracking

Intrafraction drift correction

 Corrects for drifts based on True Tracking – without performing a new 3D MR

Elekta Unity with Comprehensive Motion Management (CMM) has CE mark and U.S. FDA 510(k) clearance. Not available in all markets.

Intra-fraction motion

Gating

Elekta Unity with Comprehensive Motion Management (CMM) has CE mark and U.S. FDA 510(k) clearance. Not available in all markets.

Current status and future developments

Adaptive MR-guided RT Patient 3- the perfect/worst candidate?

Adaptive MR-guided RT Patient 3- the perfect/worst candidate?

Tumor-background contrast

Pancreas

versatile MRI

for automatic

contouring

CT w/ delineation from T2

Week 4

Treatment response and recurrence prediction, H&N squamous cell carcinoma

Week 2

Pre

Week 3

DWI .

AD

T2w

Towards real-time MRI guided adaptive radiotherapy: treating moving targets as if they are static

MRI can acquire real-time 3D updates (see Huttinga et al. Phys Med. Biol. (2020))

MRI can acquire the heart beat for cardio-respiratory tracking and gating (see Akdag et al. Phys Med. Biol. (2022))

Continuous re-planning on moving anatomy converges to acceptable dose distribution (see Kontaxis et al. Phys Med. Biol. (2015 and 2017))

Is the dream real?

- Start radiotherapy immediately
- See cancer clearly before and during treatment
- Change radiotherapy as often as the internal anatomy moves
- Alter dose day by day depending on anatomy/biology
 Few fractions

- Full optimisation in 5 mins MRgRT
- CMM gating and baseline shift
- Powered by (fMRI) imaging and AI

Zeker!

Elekta Unity treatments at UMC Utrecht

~1500 patients in ~10000 fractions

52 Unity systems in clinical use

Conclusion

- MRI is the best, most flexible, fastest imaging option for RT
- Physics tests and results are well established
- Deformations and geometrical uncertainty are small.
- Unity and MRIdian provide MRgRT throughout the world
- Unity has 1.5 T MRI soft-tissue contrast and unprecedented plan adaptation.

- Fast imaging to enable automatic gating, tracking and adaptation
- Entirely new treatments become possible (targeted lymph nodes, pancreas etc)
- A new era
 - From elective to **ablative**
 - From invasive to **non-invasive**
 - Personalized radiotherapy

